skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Welling, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rosenqvist and Hall (2019),https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002084developed a proof‐of‐concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC‐SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean‐land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst‐case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC‐SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a “perfect” storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth. 
    more » « less
  2. Space weather can affect the Earth over time spans of hours and days. However, time-stepping increments for FDTD models are typically on the order of a fraction of a second. This paper introduces a means of increasing the time stepping increment’s upper limit by artificially slowing down the speed of light. Numerically slowing down the speed of light is achieved by appropriately modifying the permittivity, permeability, and conductivity values in the model. Proof-of-concept results are provided to show that the method works well for homogeneous media. 
    more » « less
  3. Abstract To assess the effect of uncertainties in solar wind driving on the predictions from the operational configuration of the Space Weather Modeling Framework, we have developed a nonparametric method for generating multiple possible realizations of the solar wind just upstream of the bow shock, based on observations near the first Lagrangian point. We have applied this method to the solar wind inputs at the upstream boundary of Space Weather Modeling Framework and have simulated the geomagnetic storm of 5 April 2010. We ran a 40‐member ensemble for this event and have used this ensemble to quantify the uncertainty in the predicted Sym‐H index and ground magnetic disturbances due to the uncertainty in the upstream boundary conditions. Both the ensemble mean and the unperturbed simulation tend to underpredict the magnitude of Sym‐H in the quiet interval before the storm and overpredict in the storm itself, consistent with previous work. The ensemble mean is a more accurate predictor of Sym‐H, improving the mean absolute error by nearly 2 nT for this interval and displaying a smaller bias. We also examine the uncertainty in predicted maxima in ground magnetic disturbances. The confidence intervals are typically narrow during periods where the predicted dBH/dtis low. The confidence intervals are often much wider where the median prediction is for enhanced dBH/dt. The ensemble also allows us to identify intervals of activity that cannot be explained by uncertainty in the solar wind driver, driving further model improvements. This work demonstrates the feasibility and importance of ensemble modeling for space weather applications. 
    more » « less
  4. Abstract Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio and derive from it two metrics: the median symmetric accuracy and the symmetric signed percentage bias. Robust methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples. 
    more » « less
  5. Abstract We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio‐economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7–8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional‐scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large‐amplitude depressions were not captured, which caused the largest model‐data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field. 
    more » « less
  6. Abstract Surface charging by keV (kiloelectron Volt) electrons can pose a serious risk for satellites. There is a need for physical models with the correct and validated dynamical behavior. The 18.5‐month (2013–2015) output from the continuous operation online in real time as a nowcast of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) is compared to the GOES 13 MAGnetospheric Electron Detector (MAGED) data for 40, 75, and 150 keV energies. The observed and modeled electron fluxes were organized by Magnetic Local Time (MLT) and IMPTAM driving parameters; the observed Interplanetary Magnetic Field (IMF)BZ,BY, and |B|; the solar wind speedVSW; the dynamic pressurePSW; andKpandSYM‐Hindices. The peaks for modeled fluxes are shifted toward midnight, but the ratio between the observed and modeled fluxes at around 06 MLT is close to 1. All the statistical patterns exhibit very similar features with the largest differences of about 1 order of magnitude at 18–24 MLT. Based on binary event analysis, 20–78% of threshold crossings are reproduced, but Heidke skill scores are low. The modeled fluxes are off by a factor of 2 in terms of the median symmetric accuracy. The direction of the error varies with energy: overprediction by 50% for 40 keV, overprediction by 2 for 75 keV, and underprediction by 18% for 150 keV. The revealed discrepancies are due to the boundary conditions developed for ions but used for electrons, absence of substorm effects, representations of electric and magnetic fields which can result in not enough adiabatic acceleration, and simple models for electron lifetimes. 
    more » « less